The solutions to problem (6), (7) are shown by dashed curves in Fig. 4 for 6§ = 3 and
Pe = 3.75 and 4.00. When the Prandtl number Pr + 0, for all values of the parameters the
critical Rayleigh number Ra, -+ =.

The results obtained here show that lateral injection of a reactant is an effective
means of influencing the convective stability of reactive systems.

The authors thank E. M. Zhukhovitskii for supervising the work and A. A. Nepomnyashchii
for discussing the results.
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NUMERICAL STUDY OF THE UNSTABLE INTERACTION OF A SUPERSONIC
STREAM WITH A FLAT BARRIER

V. E. Kuz'mina and S. K. Matveev UDC 532.525.2

Numerous experimental studies have been devoted to the interaction of an axisymmetric
supersonic stream and a flat obstacle. For example, in [1-8], determinations were made of
the boundaries of the zone of instability [7] and the amplitude—frequency characteristics of
the process, and features of the pattern of flow were described qualitatively within a fairly
broad range of modes of interaction. In [9-13], different hypotheses were advanced on the
mechanism of the appearance of oscillations. Also, within the framework of different models,
analytical solutions were constructed and were used to determine frequency characteristics of
the process or the lower boundary of the stability zome. In [14], a numerical study was made
of one mode of nonstationary interaction between a supersonic stream and a barrier of finite
dimensions.

The present work examines the unstable interaction of a supersonic stream with an infin-
ite barrier. The problem was solved within the framework of a model of a nonviscous, non-
heat-conducting gas in accordance with the difference scheme of Godunov. The potential of
this scheme for solving several problems of unsteady gasdynamics was examined in [15]. In
[16], Godunov's method was successfully used to calculate stationary modes of interaction
between a supersonic stream and a flat barrier.

The calculations were performed on a uniform rectangular grid. The distance from the
symmetry axis to the top boundary of the grid N was made larger than the diameter of the
maximum cross section of the first roll of the free stream determined from the data in [17].
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TABLE 1

Mode No, | M, n, %, k A 5 5 m ¢
I 1,5 8 1,4 1 0 [ 90| 6 | 2400
I 2,0 3 1,4 i 0 65 | = 8 | 2000

Here, that part of the stream boundary which, according to [9], is a source of acoustic waves
in the outer space is included in the calculated region. If the sound line in the stream
flowing over the barrier went beyond the limits of the grid during the calculations, we in-
creased the width of the grid accordingly. '

The nozzle was simulated by a tube of thickness A with an open end. For the inside of
the tube, we assigned constant values of the parameters of the gas, corresponding to Mach
number M;, off-design ng, and index of the adlabatic curve %, of the flow at the edge of the
shaped nozzle. We selected as the origin of the reactangular coordinate system rOx a point
at the center of the outlet section of the tube. The calculated region of flow was bounded
by the symmetry axis r = 0, the line r = N, and the sections x = —k and x = x}, where xp is
the distance from the nozzle edge to the barrier. Henceforth, all linear dimensions are
noted relative to the nozzle radius rg,.

Parameters of the unperturbed atmosphere ocutside the nozzle are fixed at the initial
moment of time. The boundary condition on the solid surfaces and symmetry axis was the comn-
dition of impermeability; on the free boundaries of the calculated field of values of the gas-
dynamic parameters, we assumed that the values of the parameters in the cells adjacent to the
boundary were equal. In principle, such an assignment of conditions at the boundaries of the
calculated region does not maintain the original value of the off-design, and the off-design
realized may differ from .that assigned. This must be considered in analyzing the results
obtained and comparing the calculated results with the empirical data. Close to the symmetry
axis, we used an approximation of an equation for the radial component of velocity proposed
in [18].

Table 1 shows the initial data for the calculated modes of unstable interaction with a
barrier of radius rp = », as well as parameters of the calculating grid: m is the number of
cells taken over the radius of the nozzle; c¢ is the number of components of the grid.

During the calculations, at initial moments of time for each mode we observed transi-
tional processes connected with the initial stage of interaction between the stream and bar-
rier. Here, there was a nonmonotonic change in the parameters in the zone of interaction.
The completion of the transitional processes was followed by the beginning of the mode of
oscillations, nearly harmonic in character. Here, the realized off-design, defined as the
ratio of the pressure at the nozzle edge to the mean (for the period) pressure at point x =
0, r = N, differed by no more than 5% from the initial value. There was subsequently some
drift in this quantity toward smaller values.

The relative pressure pulsations (Pmax — Pmin)/Pav> Wherepp,., Ppin,and pyyare themaxi-
mum, minimum, andaverage (for the period) pressures at the point being examined in the cal-
culated region, did not exceed 5% in the top left corner of the grid on modes I and II.

Mode I calculations were performed with a grid width N = 6.5 and 8.1. Increasing N did
not produce any substantial changes in the qualitative pattern of flow in the region of in-
teraction, at least in the first period after the "establishment" of oscillations. The
values of pressure in the center of the barrier and the peripheral maximum of pressure at
the barrier at N = 8.1 differed by less than 10%Z from the corresponding values at N = 6.5.

Table 2 shows theoretical and experimental values of certain amplitude—frequency char-
acteristics of the pulsation process: Strouhal number Sh = fr,/ae (f is the frequency of the
process, do is the speed of sound in unperturbed atmosphere), mean distance from the barrier
to a central shock wave <e>, the doubled amplitude of the osclllations of the central shock
wave Ae, and the relative pressure pulsations in the center of the varrier Ap/p. (Ap and Pe
are the variable and constant components of the pressure at the barrier, respectively). The
subscript t denotes calculated values of the parameters of the pulsation process, while sub-
script e denotes experimental values. Data for values of the number Sh, were taken from
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TABLE 2
Mode LIAW Ap
No. Sht she <e>; <e>, Mt Aee .(pc)t (pc e
1 10,067 |0,066 | 2,9 3,3 0,70 0,72 0,26 0,25
11 {0,080 {0,080 | 1,6 2,1 0,40 0,80 0,15 —

dependences cited in [4] (which was an approximation of the empirical data in [6]); the values
of <e>e and Agg were obtained from Eqs. (16) and (17) in [6]. For mode II, the values of beg
and (Ap/pc)e correspond to the empirical data presented in [8].

It is evident from Table 2 that the theoretical results agree satisfactorily with the
empirical data with respect to frequency. The value of <e>t is lower than the corresponding
quantity <e>e. In mode II, the difference between <e>t and <e>g rYeaches 25% of the value of
the latter. This is connected first of all with an insufficiently accurate calculation of the
parameters on the initial supersonic section of the stream, particularly the inaccurate cal-
culation, by Godunov's method, of the parameters in the centralized rarefication wave at the
edges of the nozzle (e.g., see [19]) and the severe blurring of the stream boundaries in the
case of a through calculation. The calculated values of the oscillation amplitudes and the
drop-off of the shock, however, satisfy the relation obtained experimentally in [6].

To analyze the qualitative pattern of flow in the stream in front of the barrier (beyond
the reflected and central shock waves), lines of constant values of pressure (solid), sound
lines (points), and the field of velocity vector directions (arrows) are shown in Figs. 1-5
for modes I and II in the region 0 < r <N, %/2 < x < x,. The numbers on the isobars denote
values of pressure p relative to the atmospheric pressure. At p = 1.0, the lines p = const
are taken through Ap = 0.5. The region of crowding of the isobars denotes the position of
shock waves. For the general pattern of flow, Fig. 1 contains isobars and sound lines for
the entire calculated field for mode I. Figures l-4 correspond to four successive phases of
the oscillatory period on mode I: Figs. 1, 3 — minimum and maximum withdrawal of shock waves

- from the barrier; Figs. 2, 4 — average withdrawal of shock wave from barrier with movement of
the wave toward the nozzle and the barrier, respectively. Figure 5 shows the pattern of flow
in the stream in front of the barrier for mode II at the moment corresponding to minimum with-
drawal of the shock wave from the barrier. Such a pattern of flow behind the central shock
wave 1s also characteristic for mode II at the remaining moments of time. Figure 6a, b shows
values of pressure in the center of the barrier po (dashed line), the peripheral maximum of
pressure at the barrier pp (dash—dot line), and the distance from the barrier to the central
shock wave € (solid line) in relation to dimensionless time <t> = tao/ra for modes I and II.

Analysis of the data obtained here shows that, in accordance with the well-~known findings
in [1, 3, 7], both mode I and mode II are characterized by the following: the equality of the
frequencies of oscillation of the central shock wave and the pressure at the barrier; the
presence of a peripheral pressure maximum at the barrier; the existence at different moments
of time in the central region — bounded by the central shock wave, symmetry axis, barrier
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surface, and the surface of tangential discontinuity — of a "return" flow of gas from the
periphery to the center and a counterflow of gas from the barrier toward the nozzle; the gas
flow beyond the reflected shock wave remains supersonic for the entire oscillatory period.
The results of the calculations also show that there is a region of subsonic flow in the
peripheral gas stream close to the barrier (Figs. 1-3).

There are also differences in the qualitative pattern of flow for modes I and II. In
mode II, the return flow of gas from the periphery to the center reaches the symmetry axis,
while the counterflow of gas from the barrier to the nozzle travels along the symmetry axis;
in mode I, the return flow does not reach the axis, and the counterflow is circular. Here,
the values of the peripheral maximum of pressure in mode II are always larger — and in mode
I, always smaller — than the pressure in the center of the barrier (Fig. 6a and b).

Another feature of the pattern of flow on mode I compared to mode II is the existence of
local supersonic zones in the central region at different moments. With movement of the
central shock from the barrier to the nozzle, at different moments a supersonic zone appears
in the subsonic flow of gas that passed through the central shock. This subsonic zone is
localized near the axis of the stream. Its dimensions grow rapidly in proportion to the de-
parture of the central shock from the barrier, and at the moment the shock begins to move
toward the barrier this zone (subsonic) joins up with the supersonic zone formed behind the
central shock (Figs. 3 and 4). Here, behind the central shock in the vicinity of the triple
point, gas velocity remains subsonic. The presence of supersonic flow in the central region
leads to the appearance of a second shock wave in front of the barrier (see Fig. 4).

The presence of a second shock wave in front of a barrier to an annular counterflow of
gas under conditions similar to mode I was established empirically in [7]. The basic pos-
sibility of supersonic flow behind a central shock wave and the presence of a second shock
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wave in front of a barrier under conditions of unstable interaction were also noted in [10],
although it was not mentioned that here the gas velocity behind the shock wave in the vicinity
of the triple point remains subsonic for the entire period of oscillation.

In an analytical solution with a constant density in [20], it was shown that the empiri-
cally observed transition from a stationary mode of interaction to an unsteady mode corresponds
to a change in the sign of the velocity component tangent to the central shock in the vicinity
of the axis, the sign change being from + to — (where the positive direction is the direction
from the axis). In the calculations, for both mode I and mode II this component is negative
near the axis for the entire oscillatory period, but positive in the vicinity of the triple
point. The point at which the central shock is orthogonal to the incoming flow coincides in
the calculations with the point of inflection of the shock.

In the present work we examined conditions of severe instability far from the upper
boundary of the instability zone (see [12]). According to [1, 3], viscosity may have a sub-
stantial effect on the parameters and pattern of flow in the zone of interaction near this
boundary.

Numerical estimates of stationary modes of interaction made in [16] within the framework
of a model of a nonviscous, non-heat-conduting gas showed good agreement with empirical data.
Unsteady flow was not observed in [16] in a mode similarto conditions of severe instability
(in the process of establishment of the mode, parameters throughout the region approached
steady values); this could possibly be attributed to specific features of the calculation
scheme, namely the fact that one of the boundaries of the moveable calculating grid coincided
with the boundary of the stream. Thus, the effect of perturbations propagating in the ex-
ternal field on stream parameters was not considered.

The completed calculations provide evidence of the feasibility of the numerical investi-
gation of unstable modes of interaction by the finite-difference method of Godunov with the
inclusion of a nearby external field of the stream in the calculated region. The calcula-
tions allowed us to obtain detailed information on the pattern of flow and confirm and refine
several conclusions reached earlier by experimental and theoretical methods. '
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MODELING THE TURBULENT TRANSPORT OF AN IMPULSE IN THE WAKE OF A
CYLINDER WITH THE USE OF EQUATIONS FOR THIRD MOMENTS

A. F. Kurbatskii and A. T. Onufriev UDC 532.517.4

1. One trend in modern phenomenological theory of turbulent transport is the formulation
of a system of equations for the moments of the hydrodynamic fields of a turbulent flow, the
maximum order of which 1s usually predicted with the aid of both physical considerations and
the chosen method of closing the system. Models of turbulent transport have recently been
proposed that are closed at the level of second moments — in which the unknowns are second
moments — and in which third moments are modeled on the basis of heuristic considerations.
Equations for moments of higher order are ultimately attractive for the reason that, in a
whole range of physical problems, the turbulent transport of impulses, heat, or scalar prop-
erties cannot be correctly described within the framework of the simplest first-order gradient
models (such as the Prandtl theory of displacement paths). Such problems are not the excep-
tion, and several of them may be found in [1-4]. An example of a model of turbulent trans-
port closed at the level of the second moments (second-order model) would be the model [5] iIn
which the turbulent flows (i.e., the second moments of turbuleant fluctuations) are closed by
means of the use of the method of the kinetic theory of gases in connection with third moments.
Here, in essence a rough analogy is being made with kinetic theory, with the following justi-
fication: if a rough approximation for second-order moments makes it possible to compute
first-order values in the simplest cases (this 1s true with the simplest phenomenological
models of turbulent transport, based on the length of displacement paths), then it is pos~
sible that similar coarse approximations will make it possible to correctly predict second
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